Evaluating the ability of the pre-launch TanSat-2 satellite to quantify urban CO₂ emissions Kai Wu¹, Dongxu Yang¹, Yi Liu¹, Zhaonan Cai¹, Minqiang Zhou¹, Liang Feng², Paul I. Palmer² Carbon Neutrality Research Center, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing¹ School of GeoSciences, University of Edinburgh, Edinburgh² contact: kwu@mail.iap.ac.cn

TanSat-2 is planned to launch in 2025 as a satellite cluster with 2 or 3 satellites measuring column averaged CO₂ (XCO₂) at 3000 km wide across-track swaths, with a pixel size of 2 km × 2 km. The precision of data is designed to be less than 1 ppm. It will fly in a medium Earth orbit (MEO) with an apogee of 7840 km and a perigee of 522 km.

TanSat-2

We investigate the theoretical potential of using TanSat-2 data to infer urban CO₂ emissions.

We test the impacts of sampling patterns and XCO₂ retrieval errors on reducing flux errors.

X-STILT and ODIAC are used to simulate synthetic data and build an urban CO₂ inversion system.

We simulate XCO_2 enhancements in $\begin{bmatrix} \\ \\ \\ \\ \end{bmatrix}$ Beijing (BJ) and assess the ability of using these data to optimize urban flux estimates.

ERA5 total cloud cover are used to identify cloud-free samples of the TanSat-2 satellite.

