现主要从事大气动力学,海洋动力学和气候动力学的研究工作,在国内外刊物上发表论文数十篇,专著两部. 在国际上原创性地提出和建立了大气阻塞和北大西洋涛动(NAO)等低频模态形成的行星尺度波与天气尺度波相互作用的非线性多尺度相互作用统一理论模型(简称UNMI模型),并在国际顶尖刊物上发表了一系列论文(Dyn. Atmos. Ocean., 2000; J. Atmos. Sci., 2005b-e,2006, 2007a-c,, 2008a-b,2010a-b, 2011, 2012a-c, 2014; 2015a-c; 2018a-b, 2019, 2020a-b)为阻塞,NAO和PNA问题的解决开辟了一条新路。基于该理论模式所提出的经向位涡(PV)梯度的大小是联系北极和中纬度的桥梁,它为理论上研究阻塞, NAO,PNA与北极海冰, 海温之间的相互作用以及揭示极寒天气产生的原因打开了一扇窗。
UNMI模式的特点和发现:
(1)采用了尺度分离假设:在天气尺度涡与阻塞,NAO和PNA等纬向尺度分离假设下,可以建立起天气尺度涡与阻塞,NAO等之间的联系,并得到了大尺度和天气尺度耦合的PV方程。
(2)提出了天气尺度涡可以分解为前期存在的天气尺度涡(preexisting synoptic-scale eddies)和变形的涡(deformed eddies)。阻塞,NAO和PNA距平的变化可以由前期天气尺度涡所强迫的NSL方程来描述,而变形的天气尺度涡主要描述wave breaking和冷(暖)空气的南(北)移动,它对阻塞的维持作用不大,这质疑了前人所提出的阻塞涡拉伸(eddy straining) 理论的正确性。NSL方程的解描述了阻塞,NAO和PNA的增长和衰减的10-20天时间尺度变化。
(3)阻塞,NAO和PNA的频散性和非线性主要由背景场的位涡梯度(PVy)的大小来决定。通过PVy的改变,阻塞,NAO和PNA可以与北极增暖或海冰融化和海温联系起来。
学习和工作经历:
1982年9月-1985年7月,成都气象学院 (现成都信息工程大学)气象系,本科学习
1985年9月-1988年9月,中国科学院大气物理研究所,硕士研究生
1988年9月-1997年5月,成都气象学院气象研究所,副研究员,研究员(1995年)
1997年5月-2002年10月,中国海洋大学海洋环境学院,教授,博士,博士生导师
2002年10月-2003年10月,加拿大多伦多大学物理系,访问教授。
2003年10月-2007年10月,中国海洋大学海洋环境学院,教授,博士生导师
2007年10月-2008年1月,香港城市大学,访问教授
2008年1月-2010年11月,中国海洋大学海洋环境学院,教授,博士生导师
2015年4月-2015年5月,美国纽约州立大学Albany分校,访问教授。
2016年9月-2016年10月,美国宾夕法尼亚州立大学,访问教授.
2017年4月-2017年5月,德国汉堡大学,访问教授。
2017年10月-2017年11月,美国纽约州立大学Albany分校,美国宾夕法尼亚州立大学,访问教授。
2010年11月-至今,中国科学院大气物理研究所,研究员,博士生导师
主要的研究领域:
一.大气动力学:
(1)非线性多尺度相互作用理论的发展及其在阻塞和北大西洋振荡(NAO)动力学中的应用。
(2) 阻塞和NAO在北极海冰融化(增暖)和中纬度极端天气联系中的作用。
二.海洋动力学:
(1)大洋西边界流(黑潮延伸体和湾流)中的非线性多尺度相互作用理论。
(2)PDO, IPO和AMO等在北极海冰融化和全球增暖停滞中的作用。
三.极端天气和气候的机理分析:
(1)极寒和热浪天气
(2)格陵兰冰川的快速融化的机理。
学术团体兼职:
<<中国科学-地球科学>>编委
以下国际刊物的审稿人:
<
1999年后部分代表性国际论文(SCI):
(81) Yang, M., D. Luo, C. Li, X. Li, Y. Yao, Zhao J. and X. Chen, 2021: Inconsistent Variations between the Northern and Southern North Pacific Storm Track, Geophys. Res. Lett., (In minor revision).
(80) Yang, M., D. Luo, W, Shi, Y. Yao, Li X. and X. Chen, 2021: Contrasting Interannual Impacts of European and Greenland Blockings on the Winter North Atlantic Storm Track, Environ. Res. Lett., (Accepted)
(79) Ren, S. and D. Luo, 2021: Coupling of wind and potential temperature in an Ekman Model in
the stratified atmospheric boundary layer. J. Atmos. Sci. (In minor revision).
(78) Song, Y., D. Luo, F. Zheng and Y. Yao, 2021: Impact of Ural blocking on sub-seasonal Siberian cold anomalies under the modulation of the winter East Asian trough, Climate Dynamics (accepted).
(77) Chen Y., D. Luo, L. Zhong and Y. Yao, 2021: Effects of Barents–Kara Seas ice and North Atlantic tripole patterns on Siberian cold anomalies. Weather and Climate extremes, 34, 100385.
(76) Luo, B., D. Luo, A. Dai., I. Simmonds and L. Wu, 2021: A connection of winter Eurasian cold anomaly to the modulation of Ural blocking by ENSO. Geophys. Res. Lett., 48, e2021GL094304. https://doi.org/10.1029/2021GL094304
(75) Yang, M., D. Luo, C. Li, Y. Yao, X. Li and X. Chen, 2021: Influence of atmospheric blocking on storm track activity over the North Pacific during boreal winter. Geophys. Res. Lett., 48, e2021 GL093863. https://doi.org/10.1029/2021GL093863
(74) Chen, Y., D. Luo and L. Zhong, 2021: North Atlantic interdecadal footprint of the recent warm Arctic-cold Siberia pattern, Climate Dynamics. 57,121–139,https://doi.org/10.1007/ s00382-021-05698-9
(73) Luo, D., and W. Zhang, 2021: A nonlinear multi-scale theory of atmospheric blocking: Structure and evolution of blocking linked to meridional and vertical structures of storm tracks. J. Atmos. Sci., 78. 3153–3180
(72) Chen, X., D. Luo, Y. Wu, E., Dunn-Sigouin and J. Lu, 2021: Nonlinear response of atmospheric blocking to early winter Barents-Kara Seas warming: An idealized model study. J. Climate, 34, 2367-2383.
(71) Wang, H. and D. Luo, 2020: Summer Russian heat waves and their links to Greenland ice melting and sea surface temperature anomalies over North Atlantic and Barents-Kara Seas. Environ. Res. Lett., 15,114048.
(70) Luo, D. and W. Zhang, 2020: A nonlinear multi-scale theory of atmospheric blocking: Eastward and upward propagation and energy dispersion of tropospheric blocking wave packet. J. Atmos. Sci., 77, 4025-4049.
(69) Li, M., Y. Yao, I. Simmonds, D. Luo, L. Zhong and X. Chen, 2020: Collaborative impact of the NAO and atmospheric blocking on European heatwaves, with a focus on the hot summer of 2018, Environ. Res. Lett., 15, 114003.
(68) Luo, D. and W. Zhang, 2020: A nonlinear multi-scale theory of atmospheric blocking: Dynamical and thermodynamic effects of meridional potential vorticity gradient. J. Atmos. Sci., 77, 2471-2550.
(67) Li, M., D. Luo, A. Dai, Simmonds, I., Y. Yao and L. Zhong, 2020: Anchoring of large-scale atmospheric circulation by sea ice loss over Barents-Kara Seas. International Journal of Climatology, 41, pp 547,1097-0088.
(66) Luo, B., D. Luo, A. Dai, Simmonds, I. and L. Wu, 2020: Combined influence on North American winter air temperature variability from North Pacific blocking and North Atlantic Oscillation: Sub-seasonal and interannual timescales. J. Climate, 33, 7101-7122.
(65) Luo, D., Y. Ge, W. Zhang and A. Dai, 2020: A unified nonlinear multi-scale interaction model of Pacific North American teleconnection patterns. J. Atmos. Sci., 77, 1387-1414.
(64) Zhang, W. and D. Luo, 2020: A nonlinear theory of atmospheric blocking: An application to Greenland blocking changes linked to winter Arctic sea ice loss. J. Atmos. Sci., 77, 723-751.
(63) Li, M., Y. Yao, D. Luo and L. Zhong, 2019: The Linkage of the large-scale circulation Pattern to a long-lived heatwave over Mideastern China in 2018, Atmosphere, 10, 89, DOI: 10. 3390/atmos10020089
(62) Li. M., D. Luo, Y. Yao and L. Zhong, 2019: Large-scale circulation control of extreme hot wave events over China. International Journal of Climatology, 40, 1456-1476.
(61) Luo, D., W. Zhang, L. Zhong and A. Dai, 2019: A nonlinear theory of atmospheric blocking: A potential vorticity gradient view. J. Atmos. Sci., 76, 2399-2427.
(60) Luo, D., X. Chen, J. Overland, I. Simmonds, Wu, Y. and P. Zhang, 2019: Weakened potential vorticity barrier linked to recent winter Arctic sea ice loss and midlatitude cold extremes. J. Climate, 32, 4235-4261.
(59) Chen X. and D. Luo, 2019: Winter midlatitude cold anomalies linked to North Atlantic sea-ice and SST anomalies: The pivotal role of potential vorticity gradient. J. Climate, 32, 3957-3980
(58) Dai, A., D. Luo, M. Song and J. Liu, 2019: Arctic amplification is caused by sea-ice loss under increasing CO2. Nature Communications, 10:1.
(57) Luo*, B., L. Wu, D. Luo, A. Dai and I. Simmonds, 2019: The winter midlatitude-Arctic interaction: effects of North Atlantic SST and high-latitude blocking on Arctic sea ice and Eurasian cooling. Climate Dynamics, 52, 2981–3004
(56) Yao Y., D. Luo and L. Zhong, 2018: Effects of Northern Hemisphere Atmospheric Blocking on Arctic Sea Ice Decline in Winter at Weekly Time Scales. Atmosphere, 9, 331.
(55) Luo, D., X. Chen, A. Dai and I. Simmonds 2018: Changes in atmospheric blocking circulations linked with winter Artic warming: A new perspective. J. Climate, 31, 7661-7677
(54) Luo, D., X. Chen and S. Feldstein, 2018: Linear and nonlinear dynamics of North Atlantic Oscillations: A new thinking of symmetry breaking, J. Atmos. Sci.,75, 1955-1977, DOI: 10.1175/JAS- D-17-0274.1
(53) Chen*, X., D. Luo, S. Feldstein and S. Lee, 2018: Impact of winter Ural blocking on Arctic sea ice: Short-time variability. J. Climate, 31, 2267-2282
(52) Zhong L. H., L. Hua and D. Luo, 2018: Local and external moisture sources for the Arctic warming over the Barents-Kara Seas. J. Climate, 31, 1963-1981.
(51) Luo, D., Y. Chen, A. Dai, M. Mu, R. Zhang and I. Simmonds, 2017: Winter Eurasian cooling linked with the Atlantic Multidecadal Oscillation, Environ. Res. Lett., 12, 125002.
(50) Luo*, B., D. Luo, L. Wu, L. Zhong and I. Simmonds, 2017: Atmospheric circulation patterns which promote winter Arctic sea ice decline, Environ. Res. Lett., 12, 054017.
(49) Chen* X., and D. Luo, 2017: Arctic sea ice decline and continental cold anomalies: Upstream and downstream effects of Greenland blocking. Geophys. Res. Lett., 44, doi:10.1002/2016/ GL072387.
(48) Gong*, T. and D. Luo, 2017: Ural blocking as an amplifier of the Arctic sea ice decline in winter. J. Climate, 30, 2639-2654.
(47) Luo, D., Y. Yao, A. Dai, and I. Simmonds 2017: Increased quasi-stationarity and persistence of Ural blocking in response to Arctic warming. Part II: A theoretical explanation. J. Climate, 30, 3569-3587.
(46) Y. Yao*, D. Luo, A. Dai and I. Simmonds, 2017: Increased quasi-stationarity and persistence of Ural blocking and Eurasian extreme cold events in response to Arctic warming. Part I: Insight from Observational Analyses. J. Climate, 30, 3549-3568.
(45) Luo D., S. Feng and L. Wu, 2016: The eddy-dipole mode interaction and the decadal variability of the Kuroshio Extension system. Ocean dynamics, 66, 1317-1332, DOI 10.1007/s10236- 016-0991-6.
(44) Zhong, L., L. Hua and D. Luo, 2016: The eddy-mean flow interaction and the intrusion of western boundary current into the South China sea type basin in an idealized model. J. Phys. Ocean., 46, 2493-2527.
(43) D. Luo, Y. Xiao, Y. Diao, A. Dai, C. Franzke, and I. Simmonds, 2016: The impact of Ural blocking on winter warm Arctic-cold Eurasian anomalies. Part II: The link to the North Atlantic Oscillation, J. Climate, 29, 3949-3971.
(42) D. Luo, Y. Xiao, Y. Yao, A. Dai, I. Simmonds and C. Franzke, 2016: The impact of Ural blocking on winter warm Arctic-cold Eurasian anomalies. Part I: Blocking-induced amplification, J. Climate, 29, 3925-3947.
(41) Y. Yao*, D. Luo, A. Dai and S. Feldstein, 2016: The positive North Atlantic Oscillation with downstream blocking and Middle East snowstorms: Impacts of the North Atlantic jet. J. Climate, 29,1853-1876.
(40) D. Luo, L. Zhong, and C. Franzke, 2015: Inverse energy cascades in an eddy-induced NAO-type flow: Scale interaction mechanism J. Atmos. Sci., 72, 3417-3448.
(39) D. Luo, Y. Yao, A. Dai, and S. Feldstein, 2015: The positive North Atlantic Oscillation with downstream blocking and Middle East snowstorms: The large-scale environment. J. Climate, 28, 6398-6418.
(38) D. Luo, Y. Yao and A. Dai, 2015: Decadal relation between European blocking and North Atlantic Oscillation during 1978-2011. Part II: A theoretical model study. J. Atmos. Sci., 72,1174-1199.
(37) D. Luo, Y. Yao and A. Dai, 2015: Decadal relation between European blocking and North Atlantic Oscillation during 1978-2011. Part I: Atlantic conditions. J. Atmos. Sci., 72,1152-1173
(36) Y. Diao*, S. Xie and D. Luo, 2015: Asymmetry of winter European surface air temperature extremes and the North Atlantic Oscillation, J. Climate, 15, 517-530.
(35) D. Luo, Y. Yao, and S. Feldstein, 2014: Regime transition of the North Atlantic Oscillation and extreme cold events over Europe in January-February 2011/12. Mon. Wea. Rev., 142, 4735-4757.
(34) D. Luo, J. Cha, L. Zhong and A. Dai, 2014: A nonlinear multi-scale interaction model for atmospheric blocking: The eddy-blocking matching mechanism. Quart. J. Roy. Meteo. Soc., 140,1785–1808, July 2014 B DOI:10.1002/qj.2337.
(33) D. Luo and S. Ren, 2014: Impact of the SST-wind stress coupling on the dynamics and stability of ocean current inside and outside SST frontal zones, Dyn. Atmos. Oceans, 67, 47-64.
(32) T. Gong*, S. Feldstein and D. Luo, 2013: A simple GCM model study on the relationship between ENSO and the Southern Annular Mode. J. Atmos. Sci., 75, 1821-1832.
(31) Jiang, Z., M. Mu and D. Luo, 2013: A study of the North Atlantic Oscillation using conditional nonlinear optimal perturbation. J. Atmos. Sci., 70, 855-875.
(30) D. Luo, and J. Cha, 2012: The North Atlantic Oscillation and North Atlantic jet variability: Precursors to NAO regimes and transitions. J. Atmos. Sci., 69, 3763-3787.
(29) D. Luo, J. Cha and S. Feldstein, 2012b: Weather regime transitions and the interannual variability of the North Atlantic Oscillation. Part II: Dynamical processes. J. Atmos. Sci., 69, 2347-2363.
(28) D. Luo, J. Cha and S. Feldstein, 2012a: Weather regime transitions and the interannual variability of the North Atlantic Oscillation. Part I: A likely connection. J. Atmos. Sci., 69, 2329-2346
(27) D. Luo, Y. Diao and S. B. Feldstein, 2011: The variability of the Atlantic storm track activity and North Atlantic Oscillations: A link between intra-seasonal and interannual variability, J. Atmos. Sci., 68, 577-601.
(26) D. Luo, L. Zhong, R. Ren and C. Wang, 2010b: Spatial pattern and zonal shift of the North Atlantic Oscillation. Part II: Numerical experiments. J. Atmos. Sci., 67, 2827-2853
(25) D. Luo, Z. Zhu, R. Ren, L. Zhong and C. Wang, 2010a: Spatial pattern and zonal shift of the North Atlantic Oscillation. Part I: A dynamical interpretation. J. Atmos. Sci., 67, 2805-2826.
(24), T. Gong*, S. B. Feldstein and D. Luo, 2010: The impact of ENSO on wave breaking and Southern annular mode events. J. Atmos. Sci., 67, 2854-2870
(23) D. Luo, W. Zhou, and K. Wei, 2010: Dynamics of eddy-driven North Atlantic Oscillations in a localized shifting jet: zonal structure and downstream blocking, Climate dynamics,34, 73-100. DOI 10.1007/s00382-009-0559-y.
(22) Y., Wang*, S. Li, and D. Luo, 2009, Seasonal response of Asian monsoonal climate to the Atlantic Multidecadal Oscillation, J. Geophys. Res., 114, D02112, doi:10.1029/2008JD010929
(21) D. Luo, T. Gong and L. Zhong, 2008b: Dynamical relationship between the phase of North Atlantic Oscillations and meridional excursion of a preexisting jet: An analytical study. J. Atmos. Sci., 65, 1838-1858
(20)D. Luo, T. Gong and Y. Diao, 2008a: Dynamics of eddy-driven low-frequency dipole modes. Part IV: Planetary and synoptic wave breaking processes during the NAO life cycle. J. Atmos. Sci., 65, 737-765.
(19) D. Luo, T. Gong , Y. Diao and W. Zhou, 2007: Storm tracks and Annular Modes. Geophys. Res. Lett.., 34, L1780110.1029/2007GL030436.
(18) D. Luo, T. Gong and Y. Diao, 2007c: Dynamics of eddy-driven low-frequency dipole modes. Part III: Meridional shifts of westerly jet anomalies during two phases of NAO. J. Atmos. Sci. 64,3232-3243.
(17)D. Luo, T. Gong and A., R. Lupo, 2007b: Dynamics of eddy-driven low- frequency dipole modes. Part II: Free mode characteristics of NAO and diagnostic study. J. Atmos. Sci., 64, 29-51.
(16)D. Luo, A., R. Lupo and H. Wan, 2007a: Dynamics of eddy-driven low-frequency dipole modes. Part I: A simple model of North Atlantic Oscillations. J. Atmos. Sci., 64, 3-28.
(15) D. Luo and T. Gong, 2006c: A possible mechanism for the eastward shift of interannual NAO action centers in last three decades. Geophy. Res. Lett., 33, L24815, doi:10.1029 /2006G L027860.
(14)D. Luo and Z. Chen, 2006b: The role of land-sea topography in blocking formation in a block-eddy interaction model, J. Atmos. Sci.,63,3056-3065.
(13) Y. Diao*, J. Li and D. Luo, 2006a: A new blocking index and its application: Blocking action in the Northern Hemisphere, J. Climate, 19, 4819-4839.
(12) D. Luo and H. Wan, 2005g: Decadal variability of wintertime North Atlantic and Pacific blockings: A possible cause, Geophys. Res. Lett., 32, L23810, doi: 10. 1029/2005GL024329.
(11) D. Luo, 2005f: Why is the North Atlantic block more frequent and long-lived during the negative NAO phase, Geophys. Res. Lett., 32, L20804,doi:10, 1029/ 2005GL022927.
(10) D. Luo, 2005e: A barotropic envelope Rossby soliton model for block-eddy interaction. Part IV: Block activity and its linkage with sheared environment, J. Atmos. Sci. 62, 3860-3884
(9) D. Luo, 2005d: A barotropic envelope Rossby soliton model for block-eddy interaction. Part III: Wavenumber conservation theorems for isolated blocks and deformed eddies, J. Atmos. Sci., 62, 3839-3859
(8) D. Luo, 2005c: A barotropic envelope Rossby soliton model for block-eddy interaction. Part II: Role of westward-traveling planetary waves, J. Atmos. Sci., 62, 22-40.
(7) D. Luo, 2005b: A barotropic envelope Rossby soliton model for block-eddy interaction. Part I: Effect of topography, J. Atmos. Sci., 62,5-21.
(6) D. Luo, 2005a: Interaction between envelope soliton vortex pair block and synoptic-scale eddies in an inhomogeneous baroclinicity environment, Quart. J. Roy. Meteoro. Soc. ,131, 125-154.
(5) D. Luo, Huang F. and Y. Diao, 2001: Interaction between antecedent planetary- scale envelope soliton blocking anticyclone and synoptic-scale eddies: Observations and theory. J. Geophys. Res. Vol. 106, 31795—31816.
(4) D. Luo, 2001: Derivation of a higher order nonlinear Schr?dinger equation for weakly nonlinear Rossby waves, Wave Motion, 33,339-347..
(3) D. Luo and Y. Lu, 2000: The influence of negative viscosity on wind-driven ocean circulation in a subtropical basin, J. Phys. Ocean., 30, 916-932 .
(2) D. Luo, 2000: Planetary-scale baroclinic envelope Rossby solitons in a two- layer model and their interaction with synoptic-scale eddies. Dyn. Atmos. Oceans, 32, 27-74.
(1) D. Luo, 1999, Near-resonantly topographically forced envelope Rossby solitons in a barotropic flow. Geophys. Astrophys. Fluid Dyn., 90, 161-188.
国家重点研发计划“全球变暖停滞中的大气遥相关过程和多尺度海气相互作用”, 2016-2021年